Categorically distinct types of receptive fields in early visual cortex.

نویسندگان

  • Vargha Talebi
  • Curtis L Baker
چکیده

In the visual cortex, distinct types of neurons have been identified based on cellular morphology, response to injected current, or expression of specific markers, but neurophysiological studies have revealed visual receptive field (RF) properties that appear to be on a continuum, with only two generally recognized classes: simple and complex. Most previous studies have characterized visual responses of neurons using stereotyped stimuli such as bars, gratings, or white noise and simple system identification approaches (e.g., reverse correlation). Here we estimate visual RF models of cortical neurons using visually rich natural image stimuli and regularized regression system identification methods and characterize their spatial tuning, temporal dynamics, spatiotemporal behavior, and spiking properties. We quantitatively demonstrate the existence of three functionally distinct categories of simple cells, distinguished by their degree of orientation selectivity (isotropic or oriented) and the nature of their output nonlinearity (expansive or compressive). In addition, these three types have differing average values of several other properties. Cells with nonoriented RFs tend to have smaller RFs, shorter response durations, no direction selectivity, and high reliability. Orientation-selective neurons with an expansive output nonlinearity have Gabor-like RFs, lower spontaneous activity and responsivity, and spiking responses with higher sparseness. Oriented RFs with a compressive nonlinearity are spatially nondescript and tend to show longer response latency. Our findings indicate multiple physiologically defined types of RFs beyond the simple/complex dichotomy, suggesting that cortical neurons may have more specialized functional roles rather than lying on a multidimensional continuum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex receptive fields in primary visual cortex.

In the early 1960s, Hubel and Wiesel reported the first physiological description of cells in cat primary visual cortex. They distinguished two main cell types: simple cells and complex cells. Based on their distinct response properties, they suggested that the two cell types could represent two consecutive stages in receptive-field construction. Since the 1960s, new experimental and computatio...

متن کامل

Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell p...

متن کامل

Mapping receptive fields in primary visual cortex.

Nearly 40 years ago, in the pages of this journal, Hubel and Wiesel provided the first description of receptive fields in the primary visual cortex of higher mammals. They defined two classes of cortical cells, "simple" and "complex", based on neural responses to simple visual stimuli. The notion of a hierarchy of receptive fields, where increasingly intricate receptive fields are constructed f...

متن کامل

Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in anima...

متن کامل

Dissociation of forward and convergent remapping in primate visual cortex

A fundamental concept in neuroscience is the receptive field, the area of space over which a neuron gathers information. Until about 25 years ago, visual receptive fields were thought to be determined entirely by the pattern of retinal inputs, so it was quite surprising to find neurons in primate cortex with receptive fields that changed position every time a saccade was executed [1]. Although ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 5  شماره 

صفحات  -

تاریخ انتشار 2016